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Abstract
We expand upon the Regge-pole bounding formalism previously presented by
Handy and Msezane (2001 J. Phys. A: Math. Gen. 34 L531), by analysing in
greater detail several important singular potentials, including the V (r) = α2

r3

potential, the polarization potential, V (r) = α2

r4 , and the Lennard-Jones class

V (r) = α2

rm − β2

rn , for (m, n) = (6, 4), (12, 6). With respect to the polarization
potential, our bounds enable one to assess the accuracy of the turning point
based, asymptotic formula of Avdonina et al (Avdonina N B, Belov S, Felfli Z,
Msezane A Z and Naboko S N 2001 CAU Preprint (2002 Phys. Rev. A 65
at press). We also extend the method to the non-singular Coulomb case,
Veff(r) = − 1

r
+ l(l+1)

r2 , which represents a more challenging class of problems
(within the present bounding formalism) due to the nature of the underlying
boundary conditions.

PACS numbers: 03.65.Fd, 03.65.Ge

1. Introduction

The exploitation of Regge-pole analysis facilitates the description of many quantum scattering
problems (Frautschi 1963, Newton 1982), particularly for atomic and molecular processes,
as documented in the works by Connor (1990), Amaha and Thylwe (1991, 1994), Andersson
(1993), Germann and Kais (1997), Sofianos et al (1999), Sokolovski et al (1998), Vrinceanu
et al (2000a, 2000b), and references therein. Most of these works focus on the intricacies
of turning point contributions and Stokes line topologies. The ensuing numerical analysis
has yielded very good results. Nevertheless, it is desirable to develop alternative, analytically
simple, high precision computational methods for determining the Regge poles. One novel
approach is to generate converging bounds to the Regge poles, as proposed by Handy and
Msezane (2001). Their particular formulation originates from recent, and related, works
in applying the eigenvalue moment method (EMM) for generating converging bounds to
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complex eigenenergies of non-Hermitian, rational fraction Hamiltonians (i.e. Handy 2001a,
2001b, Handy and Wang 2001, Handy et al 2001).

In their work, Handy and Msezane adapted this type of EMM analysis for generating
converging bounds to the Regge-pole values of rational fraction scattering potentials. The
particular formulation presented in their work yielded very good bounds for the case examined
by them, that of the Lennard-Jones effective potential Veff(r) = α2

rm − β2

rn + l(l+1)

r2 , for
(m, n) = (6, 4). However, the tightness of their bounds is not as impressive as those obtained
in the above referenced works concerning complex eigenenergies. Still, the EMM–Regge-
pole analysis by Handy and Msezane marks an unprecedented first step towards a new type
of computational methodology capable of yielding highly accurate Regge poles, through
the generation of rapidly converging lower and upper bounds to the real and imaginary
parts of the Regge pole, l = (lr , li). The ability to generate complex Regge poles through
converging bounds portends a significant new computational development complementing
available numerical integration schemes and delicate analytic continuation methods. It is the
near term objective of our continued efforts to identify alternate representations within which
the generation of tight bounds becomes more efficient. To this end, as a benchmark, it is
important to ascertain the limits of the present (simple) complex rotation based framework.

In this work we expand upon the abbreviated presentation by Handy and Msezane. We start
our analysis by considering, for theoretical reasons, the V (r) = α2

r3 potential. We then examine

the case of the polarization potential problem, V (r) = α2

r4 , as well as the Lennard-Jones class

V (r) = α2

rm − β2

rn , for (m, n) = (6, 4) and (12, 6). These types of potentials correspond to
‘singular’ differential equations of non-Fuchsian type, where the effective potential diverges
at the origin faster than r−2 (i.e. the solutions involve essential singularities, etc). However,
despite these complexities, the boundary condition for the physical, Regge-pole solution, in
such cases, demands that

lim
r→0+

�r.p.(r) = 0 if lim
r→0

r2Veff(r) = ∞ (1)

and r restricted to the real axis, R.
This is actually a much simpler boundary condition than that for ‘non-singular’ (Coulomb-

like) effective potentials, Veff(r), which diverge no faster than r−2 at the origin. In such cases,
the Regge-pole solutions are of the Fuchsian type and the required boundary condition is

�r.p.(r) → N rl+1 as r → 0+ if lim
r→0

r2Veff(r) < ∞ (2)

and r ∈ R. The parameter l corresponds to the complex Regge pole. If R(l) < 0, the boundary
condition diverges at the origin. This is the case for the Coulomb (and related) problem. As
such, it requires a more delicate EMM analysis than that for which the boundary condition
vanishes at the origin. The last section of this work extends the Handy and Msezane formalism
to such cases.

Three important independent results make the Regge-pole bounding formulation possible.
The first of these results from the original work by Handy (2001a), and subsequent
reformulations by Handy and Wang (2001), Handy (2001b) and Handy et al (2001), which
show how the Schrödinger equation, extended to any complex contour in the complex-r
plane, r(ξ) : R → Cr (i.e. −( dξ

dr
d

dξ

)2
�(ξ) + Veff(ξ)�(ξ) = E�(ξ)), can be transformed

into an equivalent fourth-order, linear differential equation for the probability density
S(ξ) = |�(r(ξ))|2. This result is independent of the Hermitian/non-Hermitian (complex)
nature of the Hamiltonian. The advantage of the S(ξ) representation is that the physical
solutions are non-negative (for ξ ∈ R) and thus fulfil the first requirement towards an EMM
analysis.
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The second important result is that for any linear differential equation, with rational
fraction function coefficients involving unknown parameters (i.e. eigenvalues, Regge poles,
etc), for which the desired configuration solutions are uniquely non-negative and bounded (i.e.
in the L1 sense), one can employ EMM in order to determine the physical parameter values
in terms of converging lower and upper bounds. The EMM formalism was developed more
than 15 years ago by Handy and Bessis (1985) and Handy et al (1988a, 1988b). It exploits
well-known theorems within the classic moment problem (Shohat and Tamarkin 1963) and
makes use of a linear programming (Chvatal 1983) based cutting algorithm.

As noted above, in addition to the requirement that the transformed Schrödinger equation
involves rational fraction function coefficients, we must confirm that the physical solutions
are uniquely bounded. As explained below, the nature of the Regge-pole problem is such that
in order to achieve this, one must work within the rotated complex plane.

The Regge-pole wavefunction, �r.p.(r), along the real axis, must satisfy the asymptotic
condition:

�r.p.(r) → A eikr as r → ∞ (3)

corresponding to an outgoing wave of wave number k. At the origin, the Regge-pole
wavefunction must take on the form of the physical (bound state) wavefunction when l is
analytically continued to non-negative integer values. This results in the boundary conditions
specified in equations (1) and (2), for the Regge-pole solutions.

In order to make use of the EMM procedure, the underlying configurations must have
finite moments (for the physical solutions). This is clearly impossible for Regge-pole solution
along the real axis. One must then work within the complex-r plane, r = ρ eiθ . This is the
third result required for full implementation of EMM.

We will work with fixed θ -values, and ρ � 0. This is a very simple, although
unprecedented, complex rotation formalism for studying the Regge-pole problem. For
0 < θ < π , the Regge-pole wavefunction will be asymptotically zero, as ρ → ∞. This
follows from equation (3):

�r.p.(ρ, θ) → A ekρ(i cos(θ)−sin(θ)) → 0 as ρ → ∞. (4)

It is the origin, ρ = 0, θ = fixed, that presents the major challenges. Let us rewrite the
wavefunction as

�(ρ, θ) = |�(ρ, θ)| exp(i�(ρ, θ)). (5)

In most Regge-pole problem cases, the phase factor becomes singular at the origin (Handy
and Msezane 2001):

lim
ρ→0+

|�(ρ, θ)| = ∞. (6)

One significant contribution of working with S(ρ, θ) = |�(ρ, θ)|2 is that much of the rapidly
oscillating (non-analytic) contributions of � phase are factored out. Thus, S(ρ, θ) is a much
better behaved expression to work with.

One may use the preceding observation as an incentive in developing a non-negativity
quantization representation (NQR) formalism, in which the Schrödinger equation for � is
transformed into the S representation. As noted, another compelling argument supporting
this is that an S-differential representation is straightforward to derive and possesses all the
necessary features allowing for implementation of EMM.

As previously noted, it is possible to transform the Schrödinger equation into a fourth-
order, linear differential equation for S (Handy 2001a); however, depending on the nature of
the problem being considered, the subsequent generation of the required moment equation for
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S can become quite complicated. It is better to work with an equivalent representation
(Handy and Wang 2001), reviewed below, which makes the generation of the desired
S-moment equation much easier, particularly with regards to understanding the underlying
missing moment structure.

The Schrödinger equation, along the θ ray direction, becomes

A(ρ)� ′′(ρ) + B(ρ)� ′(ρ) + C(ρ)�(ρ) = 0 (7)

where A(ρ) = 1, B(ρ) = 0 and C(ρ) = e2iθ (E − V (ρ eiθ )) − l(l+1)

ρ2 .

Define the four configurations S(ρ) = |�(ρ)|2, P (ρ) = |� ′(ρ)|2, J (ρ) =
Im(�(ρ)∂ρ�

∗(ρ)) and T (ρ) = Im
(
∂ρ�(ρ)∂2

ρ�
∗(ρ)

)
. These correspond to important

physical quantities. The first two are non-negative functions corresponding to the probability
density and the ‘momentum density’, while J (ξ) is proportional to the probability flux.

The Schrödinger equation is then equivalent to the following set of coupled differential
equations (i.e. A = AR + iAI , etc):

(S′′(ρ) − 2P(ρ))AR,I (ρ) + S′(ρ)BR,I (ρ) + 2S(ρ)CR,I (ρ) ± 2(BI,R(ρ) + AI,R(ρ)∂ρ)J (ρ)

= 0 (8)

and

P ′(ρ)AR,I (ρ) ± 2T (ρ)AI,R(ρ) + 2P(ρ)BR,I (ρ) + S′(ρ)CR,I (ρ) ∓ 2J (ρ)CI,R(ρ) = 0. (9)

We have specified the most general form for the above, for completeness. Under the
simpler assumptions indicated above (i.e. A = 1, B = 0, etc), these coupled equations reduce
to three (the second relation of equation (9) defines T):

P(ρ) = 1
2S′′(ρ) + S(ρ)CR(ρ) (10)

∂ρJ (ρ) = S(ρ)CI (ρ) (11)

P ′(ρ) + S′(ρ)CR(ρ) − 2J (ρ)CI (ρ) = 0. (12)

Upon substituting the first two relations in the last equation, one obtains a fourth-order linear
differential equation for S. We do not give its explicit form here (refer to Handy (2001a)).

Utilizing the above set of differential equations, we can generate the necessary moment
equation for S, as required for implementation of EMM.

In each of the following sections, we detail the implementation of the above formalism
for representative scattering problems.

2. The V (r) = α2

r3 potential

We first consider the V (r) = α2

r3 potential in order to introduce our basic formalism. It also
defines one of the lowest (missing moment) dimensional problems, within our approach, with
interesting properties in the complex-r plane. In particular, we can work along the positive
imaginary axis.

The relevant Schrödinger equation is (we adopt a more general representation in order to
accomodate problems discussed in the following sections)

−� ′′(r) +

[
α2

rm
+

l(l + 1)

r2

]
�(r) = E�(r) (13)

for m = 3.
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Around the origin, the dominant potential term goes as α2

rm (m > 2). Because of its
non-Fuchsian nature (i.e. the origin is an irregular singular point (Bender and Orszag 1978)),
application of WKB asymptotic analysis yields for the general solution

�(r) ≈ A

(Veff(r) − E)
1
4

exp(−Q(r)) +
B

(Veff(r) − E)
1
4

exp(+Q(r)) (14)

where (to lowest order) Q(r) = α
( m

2 −1)
r1− m

2 and Veff(r) = V (r) + l(l+1)

r2 . We note that this
result is, essentially, independent of the (complex) Regge-pole angular momentum parameter, l.
Since the (true) bound state solutions (for l analytically continued onto the positive real axis)
must be zero at the origin (i.e. for r → 0+, along the real axis), the Regge-pole solutions must
satisfy, at r ≈ 0,

�r.p.(r) ≈ A

(Veff(r) − E)
1
4

exp(−Q(r)). (15)

The analytic continuation of this gives

�r.p.(ρ, θ) ≈ Nρ− m
4 exp

(
− α(

m
2 − 1

)ρ1− m
2 exp

(
i
(

1 − m

2

)
θ
))

. (16)

So long as cos
((

1 − m
2

)
θ
)

> 0, or

0 < θ <
π

m − 2
(17)

the Regge-pole wavefunction vanishes as ρ → 0, and θ = fixed. It will also be bounded on
ρ ∈ (0,∞), due to equation (4).

From equation (7), we have C(ρ) = CR(ρ) + iCI (ρ), where

CR(ρ) = −α2c1(θ)

ρ3
− 
R

ρ2
+ Ec2(θ) (18)

and

CI (ρ) = α2s1(θ)

ρ3
− 
I

ρ2
+ Es2(θ) (19)

involving the expressions cn(θ) ≡ cos(n θ), sn(θ) ≡ sin(n θ) and 
 = 
R + i
I ≡ l(l + 1)

(hence 
R = l2
R − l2

I + lR and 
I = 2lRlI + lI ).
Let us now define the moments for the three configurations, S, P and J as µp ≡∫∞

0 dρ ρpS(ρ), νp ≡∫∞
0 dρ ρpP (ρ) and ωp ≡ ∫∞

0 dρ ρpJ (ρ), respectively. For the problem
under consideration, the Regge-pole configuration’s decaying (essential singularity) structure
at the origin allows the moments to exist for all values of p: −∞ < p < +∞.

Applying
∫∞

0 dρρp to both sides of the (corresponding) coupled equations in
equations (10)–(12) and integrating by parts results in the coupled moment equations

νp = Ec2(θ)µp +

(
p(p − 1)

2
− 
R

)
µp−2 − α2c1(θ)µp−3 (20)

(p + 1)ωp = −Es2(θ)µp+1 + 
Iµp−1 − α2s1(θ)µp−2 (21)

and

pνp−1 + [Ec2(θ)pµp−1 − 
R(p − 2)µp−3 − α2c1(θ)(p − 3)µp−4]

+ 2[Es2(θ)ωp − 
I ωp−2 + α2s1(θ)ωp−3] = 0. (22)
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We see that equation (21) does not yield a relation for ω−1, when p = −1. Instead, it
gives the constraint

−Es2(θ)µ0 + 
I µ−2 − α2s1(θ)µ−3 = 0. (23)

We can rewrite equation (21) as

ωp = (p + 1)(−Es2(θ)µp+1 + 
I µp−1 − α2s1(θ)µp−2) + δp,−1ω−1 (24)

where

(p) =
{

0 p = 0
1
p p 	= 0.

(25)

Substituting equations (20) and (24) in equation (22) results in the moment equation

(2α2s1δp,2 − 2
Iδp,1 + 2Es2δp,−1)ω−1 − 2α4s2
1(p − 2)µp−5

+ (α2c1(3 − 2p) + 2α2
Is1((p − 2) + (p − 1)))µp−4

+

(
2
R(1 − p) +

p(p − 1)(p − 2)

2
− 2
2

I(p − 1)

)
µp−3

+ (−2α2Es1s2((p − 2) + (p + 1)))µp−2 + (2c2Ep + 2
IEs2((p − 1)

+ (p + 1)))µp−1 − 2E2s2
2(p + 1)µp+1 = 0. (26)

We are particularly interested in the case where sin(2θ) = 0, or θ = π
2 . From

equations (4) and (17) we see that along the positive imaginary axis we retain the bounded
nature of the Regge-pole wavefunction. Furthermore, for this special direction, the order of
the above moment equation significantly reduces. Along this direction, the moment equation
becomes (s2 = 0, c2 = −1, s1 = 1, c1 = 0)

(2α2δp,2 − 2
Iδp,1)ω−1 − 2α4(p − 2)µp−5 + (2α2
I ((p − 2) + (p − 1)))µp−4

+

(
2
R(1 − p) +

p(p − 1)(p − 2)

2
−2
2

I(p − 1)

)
µp−3−2Epµp−1 = 0.

(27)

Correspondingly, equation (23) becomes

µ−3 = 
I

α2
µ−2. (28)

The above moment equation (27) and constraint (28) have a relatively complicated
structure. The four moments, {µ−2, µ−1, µ0, µ1}, referred to as the missing moments, generate
all of the other moments, including ω−1. The order of this is important. Thus, for p � 3, all
of the moments {µp�2} are linearly dependent on the missing moments. The p = 2 moment
equation determines ω−1, whereas the above constraint determines µ−3. Finally, for p � 1,
the moment equation generates all the moments {µp�−4}.

We can represent the above generation process as follows. First, it is clear that all of the
moments are linearly dependent on the missing moments. We can express this by the relation

µp =
1∑

�=−2

Mp,�(
R,
I )µ� (29)

where

M�1,�2(
R,
I ) = δ�1,�2 (30)

for −2 � �1,2 � 1. These are referred to as the initialization conditions. The Mp,�

coefficients must satisfy the moment equation with respect to the p-index, for each fixed value
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of the missing moment index, �. They can be generated by making use of the initialization
conditions combined with the previously described process for generating the moments.

One final ingredient is the requirement of a normalization prescription. Since we will be
imposing the positivity requirements of the underlying S-representation configuration, we can
choose the condition

1∑
�=−2

µ� = 1 (31)

and solve for the µ−2 moment. We thus obtain the normalized relation

µp = M̂p,−2(
R,
I ) +
1∑

�=−1

M̂p,�(
R,
I )µ� (32)

where

M̂p,� =
{
Mp,−2 � = −2
Mp,� − Mp,−2 � 	= −2.

(33)

The unconstrained, normalized, missing moments are restricted to values within the unit
cube: (µ−1, µ0, µ1) ∈ [0, 1]3.

The EMM algorithm involves determining the Regge-pole values l = (lR, lI ), that satisfy
the Hankel–Hadamard inequalities (Handy et al 1988a, 1988b)

∫ ∞

0
dρ ρs


 J2∑

j=−J1

Cjρ
j




2

S(ρ) > 0 (34)

or
J2∑

j1=−J1

J2∑
j2=−J1

Cj1µs+j1+j2Cj2 > 0 (35)

for arbitrary Cj (not all identically zero) and s = −1, 0, 1.
Upon inserting the moment/missing moment relation, the above inequalities become

linear programming inequalities with respect to the unconstrained missing moments:

1∑
�=−1


−

J2∑
j1=−J1

J2∑
j2=−J1

Cj1M̂s+j1+j2,�(E,
(l))Cj2


µ�

<


 J2∑

j1=−J1

J2∑
j2=−J1

Cj1M̂s+j1+j2,0(E,
(l))Cj2


 . (36)

The physical Regge-pole value, l, uniquely satisfies these inequalities for arbitrary C
(J1,2 < ∞). That is, at a given expansion order J1,2, the feasible Regge-pole values l = (lR, lI )

are those for which there exists a missing moment solution set, U (J1,J2)(l), necessarily convex,
satisfying the above inequalities for arbitrary C. As the expansion order approaches infinity,
the set of feasible Regge-pole values reduces to the set of isolated points corresponding to
the physical Regge-pole values. The missing moment solution set, U (∞,∞)(lr.p.), for each
physical Regge-pole value, lr.p., also reduces to an ms(=3) dimensional vector (i.e. a point,
geometrically).

The EMM algorithmic structure uses linear programming to determine the existence, or
non-existence, of U (J1,J2)(l) for arbitrary l. It does this through implementation of a fast
cutting (bisection) method that generates a bounding polytope (i.e. a convex set bounded by
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4.8 5lI
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l I

Expansion order: J1,2=14

Figure 1. The formation of the bounding region for the first Regge pole of the 2
r3 potential.

Table 1. The bounds for the low-lying Regge pole of the V (r) = 2
r3 potential (θ = π

2 ).

(−J1, J2) l
(L)
R < lR < l

(U)
R l

(L)
I < lI < l

(U)
I

(−14, 14) 1.807 < lR < 1.920 4.48 < lI < 4.63
(−16, 16) 1.832 < lR < 1.880 4.53 < lI < 4.58
(−18, 18) 1.8426 < lR < 1.8645 4.5533 < lI < 4.5667
(−20, 20) 1.8538 < lR < 1.8584 4.5553 < lI < 4.5647

intersecting hyperplanes), P , within which the missing moment solution set must lie (if it
exists): U (J1,J2)(l) ⊂ P (J1,J2)(l). If the solution set does not exist, then the cutting method
quickly reduces the initial (missing moment) unit hypercube to the null set.

The determination of the feasible l values, to given expansion order, requires a two-
dimensional partitioning search within the complex Cl plane.

In table 1, we cite a few results for the 2
r3 potential. In figure 1 we depict the formation

of the bounding region for the first Regge pole, for various expansion order values (i.e.
14 � J1 = J2 � 20).
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3. The V (r) = α2

r4 polarization potential

The polarization potential problem V (r) = α2

r4 has received much attention in the recent
works by Vrinceanu et al (2000a) and Avdonina et al (2001). From the EMM–Regge analysis
perspective, it defines a low dimension missing moment problem capable of generating tight
Regge-pole bounds.

The relevant Schrödinger equation is

−� ′′(r) +

[
α2

r4
+

l(l + 1)

r2

]
�(r) = E�(r). (37)

From equation (7), we have

CR(ρ) = −α2c2(θ)

ρ4
− 
R

ρ2
+ Ec2(θ) (38)

and

CI (ρ) = α2s2(θ)

ρ4
− 
I

ρ2
+ Es2(θ). (39)

Applying
∫∞

0 dρ ρp to both sides of the (corresponding) coupled equations in
equations (10)–(12) and integrating by parts results in the coupled moment equations

νp = Ec2(θ)µp +

(
p(p − 1)

2
− 
R

)
µp−2 − α2c2(θ)µp−4 (40)

(p + 1)ωp = −Es2(θ)µp+1 + 
Iµp−1 − α2s2(θ)µp−3 (41)

and

pνp−1 + [Ec2(θ)pµp−1 − 
R(p − 2)µp−3 − α2c2(θ)(p − 4)µp−5]

+ 2[Es2(θ)ωp − 
I ωp−2 + α2s2(θ)ωp−4] = 0. (42)

Two sets of equations ensue for the p = even/odd cases. Either one can be used. The
easier one corresponds to the p = even case, since no zero denominators are encountered in
solving for ωp. The p = odd case is discussed in the following section.

Implicitly assuming that p = even, we can substitute in equation (42) for νp and ωp,
obtaining the moment equation[

2s2
2E

2

p + 1

]
µp+1 −

[
2c2Ep + 2
Is2E

(
1

p + 1
+

1

p − 1

)]
µp−1 +

[
−p

2
((p − 1)(p − 2)

− 2
R) + (p − 2)
R + 2

2

I

p − 1
+ 2s2

2α
2E

(
1

p + 1
+

1

p − 3

)]
µp−3

+

[
2α2c2(p − 2)−2
Iα

2s2

(
1

p − 3
+

1

p − 1

)]
µp−5 + 2

[
α4s2

2

p − 3

]
µp−7 = 0

(43)

where p = even!
Adopting the notation p = 2η, where −∞ < η < +∞, we note that the odd-order

moments, µ2η+1, correspond to the moments of the function ϒ(ξ) ≡ 1
2S(

√
ξ), where ξ ≡ ρ2.

We denote the moments of ϒ(ξ) by uη ≡ ∫∞
0 dξ ξηϒ(ξ) = µ2η+1.



6368 C R Handy et al

The new moment equation becomes[
2s2

2E
2D(η)

]
uη − [4c2Eη + 2
Is2E(D(η) + D(η − 1)]uη−1

+ [−2η((2η − 1)(η − 1) − 
R) + 2(η − 1)
R + 2
2
ID(η − 1)

+ 2s2
2α

2E(D(η) + D(η − 2)]uη−2 + [4α2c2(η − 1) − 2
Iα
2s2(D(η − 1)

+ D(η − 2))]uη−3 + 2
[
α4s2

2D(η − 2)
]
uη−4 = 0 (44)

where D(η) ≡ 1
2η+1 .

This corresponds to a finite difference equation of order 4, since specification of the
missing moments {u0, u1, u2, u3} is required before all of the other moments can be generated
(i.e. take η � 4, thereby generating u�4 and η � 3, generating u�−1).

The linear dependence on the missing moments can be expressed in terms of the relation

uη =
3∑

�=0

Mη,�(E,
(l))u� (45)

where the Mη,�(E,
(l)) coefficients satisfy the above moment equation with respect to the
η-index, and in addition must satisfy the initialization conditions

M�1,�2 = δ�1,�2 (46)

for 0 � �1,2 � 3.
A normalization condition is required. One can impose

∑ms=3
�=0 u� = 1. Solving for u0

yields the relation

uη = M̂η,0(E,
(l)) +
3∑

�=1

M̂η,�(E,
(l))u� (47)

where

M̂η,�(E,
(l)) =
{
Mη,0(E,
(l)) for � = 0
Mη,�(E,
(l)) − Mη,0(E,
(l)) for � = 1, 2, 3.

(48)

As in the previous problem, the unconstrained, normalized, missing moments are always
constrained to assume values within the unit hypercube: (u1, . . . , ums

) ∈ [0, 1]ms .
The EMM algorithm involves determining the Regge-pole values l = (lR, lI ), that satisfy

the Hankel–Hadamard inequalities

∫ ∞

0
dξ ξs


 J2∑

j=−J1

Cjξ
j




2

ϒ(ξ) > 0 (49)

or
J2∑

j1=−J1

J2∑
j2=−J1

Cj1us+j1+j2Cj2 > 0 (50)

for arbitrary Cj (not all identically zero) and s = −1, 0, 1.
Upon inserting the moment/missing moment relation, the above inequalities become

linear programming inequalities with respect to the unconstrained missing moments, as
discussed previously.

In table 2, we cite a few results for the polarization problem. We compare our bounds to
the results derived from Avdonina et al’s (2001) turning point analysis estimation formula for
the nth Regge pole:

ln ≈ −1

2
+ (1 + i)(αk)

1
2 + i

(√
2n +

1√
2

)
. (51)
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Table 2. The bounds for the low-lying Regge poles of the V (r) = 2
r4 polarization potential

(θ = π
4 ).

(−J1, J2) l
(L)
R < lR < l

(U)
R l

(L)
I < lI < l

(U)
I ln, equation (51)

(−12, 12) 4.796 < lR < 4.842 5.92 < lI < 6.20
(−16, 16) 4.826 < lR < 4.832 5.976 < lI < 6.060
(−20, 20) 4.827 14 < lR < 4.829 84 6.006 24 < lI < 6.026 40
(−24, 24) 4.828 827 < lR < 4.829 081 6.012 00 < lI < 6.016 12 (4.818 296, 6.025 403)n=0

(−12, 12) 4.34 < lR < 6.51 6.6 < lI < 9.4 (no bounda)

(−16, 16) 4.89 < lR < 5.98 6.9 < lI < 9.4 (no bounda)

(−24, 24) 4.920 < lR < 4.953 7.20 < lI < 7.58 (4.818 296, 7.439 616)n=1

a The bound is artificial, due to its being the endpoint of the sampling interval in question.

Table 3. The tightness of polarization potential bounds for varying θ , where (−J1, J2) =
(−12, 12).

θ l
(L)
R < lR < l

(U)
R l

(L)
I < lI < l

(U)
I

0.3 2.3 < lR < 7.3 4.72 < lI < 8 (no bounda)

0.4 2.9 < lR < 8.4 5.44 < lI < 8 (no bounda)

0.5 3.5 < lR < 9.0 5.68 < lI < 8 (no bounda)

0.6 4.08 < lR < 8.07 5.80 < lI < 8 (no bounda)

0.7 4.79 < lR < 4.84 5.96 < lI < 6.12
π
4 = 0.785 40 4.796 < lR < 4.842 5.92 < lI < 6.20
0.8 4.795 < lR < 4.846 5.92 < lI < 6.20
0.9 4.686 < lR < 4.991 5.84 < lI < 6.32
1.0 3.97 < lR < 8.11 5.76 < lI < 8 (no bounda)

1.1 3.4 < lR < 9.8 5.52 < lI < 8 (no bounda)

a The bound is artificial, due to its being the endpoint of the sampling interval in question.

We take k = 20 and α2 = 2. Since θ < π
2 from equation (17), we can take θ = π

4 , resulting
in s2 = 1, and eliminating the numerical problems associated with small denominators.

Our numerical results were implemented with rescaled moments, ũη = uη

f η , where we
choose f so that the ũ-moment equation coefficients (obtainable from equation (44)) for the
ũη and ũη−4 terms are identical: f = α

k
.

In table 3 we compare the tightness of the bounds, with varying θ values, for the first Regge
pole. Usually, tighter bounds are achieved when the associated wavefunction configuration
decays faster. For singular potential problems, the decay characteristics near the origin,
ρ ≈ 0, and at infinity, ρ → ∞, in accordance with the relations cited in equation (4) and
equations (16) and (17), respectively, affect the tightness of the bounds. The fastest decay, near
the origin, is along the real axis (θ = 0). The fastest decay, at infinity, is along the imaginary
axis

(
θ = π

2

)
. Of course, we are limited by 0 < θ < π

2 for the polarization problem. The
decay characteristics worsen at the origin, as θ becomes more positive. Similarly, the decay
characteristics at infinity also become less rapid, as θ decreases.

For the case of the polarization potential, we have S(ρ) ≈ N1ρ
2 exp

(− 2α cos(θ)

ρ

)
, as

ρ → 0. Also, S(ρ) ≈ N2 exp(−2k sin(θ)ρ), as ρ → ∞. If we rescale in accordance with
ρ̃ = ρ√

f
, we see that the coefficients within the arguments of the exponentials become 2α cos(θ)√

f

and 2k sin(θ)
√

f . Thus, for this problem, we have identical (asymptotic) exponential decay
(with respect to the 1

ρ
and ρ variables, respectively) when both coefficients are equal to each

other. Since f ≡ α
k

, where E = k2, it follows that the tightest bounds are to be expected near
θ ≈ π

4 , as given in table 3.
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Table 4. The improved bounds for the low-lying Regge poles of the V (r) = 2
r4 polarization

potential (θ = π
4 ).

k (−J1, J2) l
(L)
R < lR < l

(U)
R l

(L)
I < lI < l

(U)
I ln, equation (51)

20 (−12, 12) 4.8172 < lR < 4.8388 5.992 < lI < 6.048
20 (−16, 16) 4.8275 < lR < 4.8305 6.01 < lI < 6.02
20 (−20, 20) 4.828 79 < lR < 4.829 11 6.012 < lI < 6.016 (4.818 296, 6.025 403)n=0

20 (−12, 12) 4.21 < lR < 8.10 6.88 < lI < 10.8 (no bounda)

20 (−20, 20) 4.92 < lR < 4.94 7.20 < lI < 7.43
24 (−24, 24) 4.922 < lR < 4.9302 7.25 < lI < 7.34 (4.818 296, 7.439 616)n=1

a The bound is artificial, due to its being the endpoint of the sampling interval in question.

In the last section of this work we analyse the Bohr potential (a non-singular case), where
the bounds do improve as θ → π

2 . This is because the relevant EMM analysis does not involve
any angular dependences associated with the origin. One is free to take θ → π

2 .

3.1. Improving the tightness of the bounds

We can improve the previous results by also imposing the constraints corresponding to the
non-negativity of the P(ρ) configuration. Thus, from equation (40), taking p = 2η + 1 (so as
to convert it into a moment equation involving the odd-order µ moments), we obtain

vη = Ec2(θ)uη + (η(2η + 1) − 
R)uη−1 − α2c2(θ)uη−2 (52)

where vη ≡ ν2η+1. We can then rescale this relation:

ṽη = Ec2(θ)ũη + f −1(η(2η + 1) − 
R)ũη−1 − f −2α2c2(θ)ũη−2 (53)

where ṽη ≡ vη

f η , etc.

The normalized and rescaled ũ-moment equation can be written as ũη = M̂(f )
η,0 +∑3

�=1 M̂(f )
η,�ũ� (we omit the details of this obvious procedure). Substituting above, we can

also rewrite the ṽ-moment equation in an analogous form: ṽη = N̂
(f )

η,0 +
∑3

�=1 N̂
(f )

η,� ũ�, and
proceed to generate the moment problem constraints as before. The results of this analysis are
given in table 4. It is evident that a few orders of magnitude improvement, in the generated
bounds, are obtained.

Clearly, the generated bounds establish some important limitations in the accuracy of the
asymptotic analysis by Avdonina et al. Their estimation formula is off by 0.2% and 2%, for
the first and second Regge-pole values, respectively.

4. The V (r) = α2

r6 − β2

r4 scattering potential

In this section we expand upon the abbreviated discussion presented by Handy and Msezane
(2001) with regards to the Lennard-Jones problem defined by (i.e. α > 0)

−� ′′(r) +

[
α2

r6
− β2

r4
+

l(l + 1)

r2

]
�(r) = E�(r) (54)

previously investigated by Amaha and Thylwe (1991, 1994).
The relevant CR,I (ρ) functions become

CR(ρ) = −α2c4(θ)

ρ6
+

β2c2(θ)

ρ4
− 
R

ρ2
+ Ec2(θ) (55)
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and

CI (ρ) = α2s4(θ)

ρ6
− β2s2(θ)

ρ4
− 
I

ρ2
+ Es2(θ) (56)

involving the expressions cn(θ) ≡ cos(n θ), sn(θ) ≡ sin(n θ) and 
 = 
R + i
I ≡ l(l + 1)

(hence 
R = l2
R − l2

I + lR and 
I = 2lRlI + lI ).
As in the polarization potential case, define the moments for the three configurations, S, P

and J as µp ≡ ∫∞
0 dρ ρpS(ρ), νp ≡ ∫∞

0 dρ ρpP (ρ) and ωp ≡ ∫∞
0 dρ ρpJ (ρ). As before,

Regge-pole configuration’s decaying (essential singularity) structure at the origin allows the
moments to exist for all values of p: −∞ < p < +∞.

Applying
∫∞

0 dρ ρp to both sides of the (corresponding) coupled equations in
equations (10)–(12) and integrating by parts results in the coupled moment equations

νp = Ec2(θ)µp +

(
p(p − 1)

2
− 
R

)
µp−2 + β2c2(θ)µp−4 − α2c4(θ)µp−6 (57)

pωp−1 = −Es2(θ)µp + 
Iµp−2 + β2s2(θ)µp−4 − α2s4(θ)µp−6 (58)

and

pνp−1 + [Ec2(θ)pµp−1 − 
R(p − 2)µp−3 + β2c2(θ)(p − 4)µp−5 − α2c4(θ)(p − 6)µp−7]

+ 2[Es2(θ)ωp − 
I ωp−2 − β2s2(θ)ωp−4 + α2s4(θ)ωp−6] = 0. (59)

We see that the second moment equation (58) determines all the ω-moments, in terms of
the µ-moments, except for ω−1 (for p = 0). Adopting Handy and Msezane’s (2001) notation,
let us therefore rewrite this as (p → p + 1)

ωp = �(p)(−Es2(θ)µp+1 + 
Iµp−1 + β2s2(θ)µp−3 − α2s4(θ)µp−5) + δp,−1ω−1 (60)

where

�(p) =
{

1
p + 1 p 	= −1

0 p = −1
(61)

and δp,−1 is the Kronecker delta function (i.e. �(p) ≡ (p + 1), in equation (24)).
Substituting equations (57) and (60) in equation (59), one obtains the µ-moment equation

2α4s2
4(θ)�(p − 6)µp−11 − 2α2β2s2(θ)s4(θ)[�(p − 6) + �(p − 4)]µp−9

+
[
2α2c4(θ)(p − 3) − 2α2s4(θ)
I�(p − 6) + 2β4s2

2(θ)�(p − 4)

−2α2
Is4(θ)�(p − 2)
]
µp−7 + [2β2(c2(θ)(2 − p) + 
Is2(θ)(�(p − 2)

+ �(p − 4))) + 2α2Es2(θ)s4(θ)(�(p) + �(p − 6))]µp−5

+
[−2
R − p + 2
Rp + 3

2p2 − 1
2p3 − 2β2Es2

2 (θ)�(p − 4)

+ 2
2
I�(p − 2) − 2β2Es2

2 (θ)�(p)
]
µp−3

− 2E[c2(θ)p + 
Is2(θ)(�(p − 2) + �(p))]µp−1 + 2E2s2
2(θ)�(p)µp+1

+ 2[−α2s4(θ)δp−6,−1 + β2s2(θ)δp−4,−1 + 
Iδp−2,−1 − Es2(θ)δp,−1]w−1 = 0.

(62)

In addition, we also have from equation (58) (i.e. p = 0):

−Es2(θ)µ0 + 
I µ−2 + β2s2(θ)µ−4 − α2s4(θ)µ−6 = 0. (63)

These equations split into two recursive relations, one for the even-order moments
{µ2η| −∞ < η < +∞}, the other for the odd moments {µ2η+1| −∞ < η < +∞}. We can
work either one of these. For completeness, we detail the form of both relationships.
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The first set corresponds to the moments of the function ϒe(ξ) ≡ 1
2
√

ξ
S(

√
ξ), as is evident

from the change of variables ρ2 = ξ : µ2η = ∫∞
0 dρ ρ2ηS(ρ), or µ2η = ∫∞

0 dξ ξηϒe(ξ).
The odd-order moments, µ2η+1, are the moments of the function ϒo(ξ) ≡ 1

2S(
√

ξ), through a
similar argument. We will designate these moments as follows:

µ2η+σ =
{
ue

η σ = 0
uo

η σ = 1.
(64)

The ensuing moment equations become (i.e. p = 2η)

2α4s2
4(θ)�(2η − 6)uo

η−6 − 2α2β2s2(θ)s4(θ)[�(2η − 6) + �(2η − 4)]uo
η−5

+
[
2α2c4(θ)(2η − 3) − 2α2s4(θ)
I�(2η − 6) + 2β4s2

2 (θ)�(2η − 4)

− 2α2
Is4(θ)�(2η − 2)
]
uo

η−4 + [2β2(c2(θ)(2 − 2η) + 
I s2(θ)(�(2η − 2)

+ �(2η − 4))) + 2α2Es2(θ)s4(θ)(�(2η) + �(2η − 6))]uo
η−3

+
[−2
R − 2η + 4
Rη + 3

2 (2η)2 − 1
2 (2η)3 − 2β2Es2

2 (θ)�(2η − 4)

+ 2
2
I�(2η − 2) − 2β2Es2

2(θ)�(2η)
]
uo

η−2 − 2E[c2(θ)2η

+ 
Is2(θ)(�(2η − 2) + �(2η))]uo
η−1 + 2E2s2

2(θ)�(2η)uo
η = 0 (65)

and (i.e. p = 2η + 1)

2α4s2
4(θ)�(2η − 5)ue

η−5 − 2α2β2s2(θ)s4(θ)[�(2η − 5) + �(2η − 3)]ue
η−4

+
[
2α2c4(θ)(2η − 2) − 2α2s4(θ)
I�(2η − 5)

+ 2β4s2
2(θ)�(2η − 3) − 2α2
Is4(θ)�(2η − 1)

]
ue

η−3

+ [2β2(c2(θ)(1 − 2η) + 
I s2(θ)(�(2η − 1) + �(2η − 3)))

+ 2α2Es2(θ)s4(θ)(�(2η + 1) + �(2η − 5))]ue
η−2

+
[−2
R − (2η + 1) + 2
R(2η + 1) + 3

2 (2η + 1)2 − 1
2 (2η + 1)3

− 2β2Es2
2(θ)�(2η − 3) + 2
2

I�(2η − 1) − 2β2Es2
2(θ)�(2η + 1)

]
ue

η−1

− 2E[c2(θ)(2η + 1) + 
I s2(θ)(�(2η − 1) + �(2η + 1))]ue
η

+ 2E2s2
2(θ)�(2η + 1)ue

η+1 + 2[−α2s4(θ)δη,2 + β2s2(θ)δη,1

+ 
Iδη,0 − Es2(θ)δη,−1]ω−1 = 0 (66)

together with

−Es2(θ)ue
0 + 
I u

e
−1 + β2s2(θ)ue

−2 − α2s4(θ)ue
−3 = 0. (67)

The moment equation for the ue
η moments involves the ω−1 moment. Both moment

equations are recursively generated in both the positive and negative asymptotic directions
with respect to η, as described below.

The uo
η moments satisfy a sixth-order finite difference equation. We can pick{

uo
−5, u

o
−4, . . . , u

o
0

}
as the initialization, or missing moments. All of the other moments

are linearly dependent on them. We express this as

uo
η =

0∑
�=−5

Mo
η,�(lR, lI )u

o
� (68)

where Mo
�1,�2

= δ�1,�2 , for −5 � �1,2 � 0. In addition, the Mo
η,� coefficients satisfy the

corresponding uo
η-moment equation with respect to the η-index. To generate the uo (as well as

the Mo coefficients) we take η � 1, and generate the positive-indexed moments
{
uo

η�1

}
, from
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equation (65) (i.e. using the 2E2s2
2(θ)�(2η)uo

η term). We then take η � 0 in equation (65), and
use the first term (i.e. 2α4s2

4(θ)�(2η− 6)uo
η−6) to generate all the remaining negative-indexed

moments. We will generate the moments
{
uo

P1
, . . . , uo

P2

}
, where P1 � −6 and P2 � 1.

A similar, although more involved, process holds for the ue
η moments. In particular,

the ω−1 effectively becomes an inhomogeneous term. More precisely, from equation (66),
it follows that knowledge of the initialization variables {χ�| − 3 � � � 3} ≡{
ue

−3, . . . , u
e
2

}⋃{ω−1} generates all of the moments {ue
�−4|η � 1 in equation (66)}⋃{ue

�3|η � 2 in equation (66)}. This linear dependence on the initialization variables can be
represented as

ue
η =

3∑
�=−3

Me
η,�(lR, lI )χ� (69)

for all η ∈ (−∞, +∞), where {χ−3, χ−2, . . . , χ3} ≡ {
ue

−3, u
e
−2, . . . , u

e
2, ω−1

}
.

Care must be exercised in defining the appropriate initialization conditions. Specifically,

Me
η,� = δη,� −3 � η � 2, −3 � � � 3. (70)

However, one must now also incorporate the additional constraint from equation (67).
Eliminating χ−3 ≡ ue

−3, or ue
−3 = ∑0

�=−2 ��u
e
� (where �−2 = β2s2(θ)

α2s4(θ)
, �−1 = 
I

α2s4(θ)
, �0 =

− Es2(θ)

α2s4(θ)
), yields a new linear relation:

ue
η =

3∑
�=−2

M̃e
η,�(lR, lI )χ� (71)

where M̃e
η,�(lR, lI ) = Me

η,�(lR, lI ) + Me
η,−3(lR, lI )��, for −2 � � � 0 and M̃e

η,�(lR, lI ) =
Me

η,�(lR, lI ), for 1 � � � 3.
Unlike the ue missing moments, ω−1’s signature is arbitrary. One can proceed with an

EMM analysis taking this into account. However, it is usually more convenient to work
with non-negative linear programming variables. Thus, we can invert the η = 2 relation
above and solve for ω−1 in terms of

{
ue

−2, . . . , u
e
3

}
. Thus, the final set of variables becomes{

ue
−2, . . . , u

e
3

}
. Let us denote by ue

η = ∑3
�=−2

˜̃Mη,�(lR, lI )u
e
� the final linear relation, after

substituting ue
3 for ω−1. We can then proceed to impose the normalization condition previously

described, and implement the EMM algorithm.
Instead of the preceding circuitous analysis, we can achieve the same through a more

direct approach. Let us symbolize equation (66), for −∞ � η � +∞, as follows (we take
�−5 ≡ 2α2s2

4(θ) and �1 ≡ 2E2s2
2 (θ), and make use of �(−1) = 0):

�−5�(−9)ue
−7 + · · · + �1�(−3)ue

−1 = 0 for η = −2
�−5�(−7)ue

−6 + · · · + (· · ·)ue
−1 − 2Es2(θ)ω−1 = 0 for η = −1

�−5�(−5)ue
−5 + · · · + �1�(1)ue

1 + 2
Iω−1 = 0 for η = 0
�−5�(−3)ue

−4 + · · · + �1�(3)ue
2 + 2β2s2(θ)ω−1 = 0 for η = 1

(· · ·)ue
−2 + · · · + �1�(5)ue

3 − 2α2s4(θ)ω−1 = 0 for η = 2
�−5�(1)ue

−2 + · · · + �1�(7)ue
4 = 0 for η = 3.

(72)

Combining these with equation (67), we see that we can use the η = 2 relation to determine
ω−1 from

{
ue

−2, . . . , u
e
3

}
. Denote this relation by

ω−1 =
3∑

�=−2

N�(lR, lI )u
e
�. (73)
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Table 5. The bounds for the first Regge pole of the V (r) = α2

r6 − β2

r4 scattering potential (θ = 0.3).

(−J1, J2) l
(L)
R < lR < l

(U)
R l

(L)
I < lI < l

(U)
I

(−14, 10) 97.4 < lR < 97.7 12.3 < lI < 12.6
(−16, 12) 97.48 < lR < 97.56 12.36 < lI < 12.45
(−18, 14) 97.4950 < lR < 97.5400 12.3735 < lI < 12.4185

Amaha and Thylwe’s (1994) result: (97.496 528 74, 12.396 371 67).

From equation (67), the same holds for ue
−3. It then follows that for η � 1, we can generate

the ue
�−4 moments from the

{
ue

−2, . . . , u
e
3

}
. Similarly, for η � 3 we can generate the ue

�4
moments.

Having established that all of the moments, including ω−1, are linearly dependent on the{
ue

−2, . . . , u
e
3

}
moments, we can write

ue
η =

3∑
�=−2

˜̃Mη,�(lR, lI )u
e
� (74)

for −∞ < η < +∞. Self-consistency requires the initialization conditions:

˜̃Mη,� = δ�1,�2 (75)

for −2 � �1, �2 � 3.
Substituting the above linear relations (including that for ω−1) into equations (66) and

(67), we obtain new expressions valid for arbitrary
{
ue

−2, . . . , u
e
−3

}
; these in turn define

the recursion relation for the ˜̃Mη,�(lR, lI ). We can then impose the desired normalization
condition, as before, and implement the necessary EMM analysis.

In order to test the validity of the above theoretical relations, we examine one of the
examples considered by Amaha and Thylwe. Specifically, we take (in terms of their notation)
α2 = 2 A2

K
, β2 = 3 A2

K
,E = A2, A = 63.641 and K = 1.1489.

In table 5 we only cite the numerical results for the uo formulation. The numerical results
achieved with the ue formulation are comparable. The generation of bounds to the low-lying
Regge pole manifests a clear convergent behaviour, with increasing moment order J1,2, as
defined in the previous section.

From equation (17), we see that θmax < π
4 . From equation (65), the generation of the

negative-indexed moments involves the denominator expression sin2(4θ), whereas the
generation of the positive-indexed moments involves sin2(2θ). If one takes 4θ = π

2 , then
equation (17) is satisfied, and no ‘small denominator’ numerical error generation is anticipated
for the negative-indexed moments, since sin2(4θ) = 1. The corresponding expression for the
positive-indexed moments involves sin2(2θ) = 1

2 , which is also not too small. Nevertheless,
for θ = 0.4 ≈ π

8 , the convergence rate of the Regge-pole bounds appeared to be very slow.
For θ = 0.3, faster convergence was noted. This is the case cited in table 5.

5. The V (r) = α2

r12 − β2

r6 scattering potential

We now consider the (12, 6) Lennard-Jones potential,

−� ′′(r) +

[
α2

r12
− β2

r6
+




r2

]
�(r) = E�(r) (76)
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rotated in the complex-r plane, r = ρ eiθ :

� ′′
θ (ρ) +

[
−α2 e−10iθ

ρ12
+

β2 e−4iθ

ρ6
− 


ρ2
+ E e2iθ

]
�θ(ρ) = 0 (77)

where �θ(ρ) ≡ �(ρ eiθ ).
All of the analytical results pertaining to the (6, 4) Lennard-Jones case considered in the

previous section hold. In particular, the Regge-pole solution in the present case also vanishes,
exponentially, at the origin, due to the underlying essential singularity. Relative to the coupled
set of equations in equations (10)–(12), the relevant function coefficients become:

CR(ρ) = −α2c10

ρ12
+

β2c4

ρ6
− 
R

ρ2
+ c2E (78)

and

CI (ρ) = α2s10

ρ12
− β2s4

ρ6
− 
I

ρ2
+ s2E. (79)

The coupled moment equations for the S, P, J configurations assume the form

νp = c2Eµp +

(
p(p − 1)

2
− 
R

)
µp−2 + β2c4µp−6 − α2c10µp−12 (80)

−(p + 1)ωp = s2Eµp+1 − 
Iµp−1 − β2s4µp−5 + α2s10µp−11 (81)

−α2c10(p − 12)µp−13 + β2c4(p − 6)µp−7 − 
R(p − 2)µp−3 + c2Epµp−1

+ pνp−1 + 2α2s10ωp−12 − 2β2s4ωp−6 − 2
Iωp−2 + 2Es2ωp = 0. (82)

As before, the odd/even µ-moments separate. We will only work with the odd case, since
then one can use equation (81) to solve for all the even-order ω-moments, which are then
substituted in equation (82). The first moment relation, equation (80), is used to substitute for
the ν-moments in equation (82) as well. The moment equation for the odd-order moments,
uo

η ≡ µ2η+1, becomes∑
j∈J

Cj (η)uo
η−j = 0 (83)

where

J = {0, 1, 2, 3, 4, 6, 7, 9, 12}. (84)

Defining D(η) ≡ 1
1+2η

, the required coefficients are

Cj(η) =




−2α4s2
10D(η − 6) j = 12

2(αβ)2s10s4(D(η − 6) + D(η − 3)) j = 9
12α2c10 − 4α2c10η + 2α2s10
I(D(η − 6) + D(η − 1)) j = 7
−2α2Es10s2(D(η) + D(η − 6)) − 2β4s2

4D(η − 3) j = 6
−6β2c4 + 4β2c4η − 2β2
Is4(D(η − 3) + D(η − 1)) j = 4
2β2Es2s4(D(η) + D(η − 3)) j = 3
2
R + 2η − 4
Rη − 6η2 + 4η3 − 2
2

ID(η − 1) j = 2
4c2Eη + 2Es2
I(D(η − 1) + D(η)) j = 1
−2s2

2E
2D(η) j = 0.

(85)

In principle, we can take the missing moments to be
{
uo

0, . . . , u
o
11

}
, which can be used to

generate all the moments uo
η, for η � 12 and η � −1. However, in generating these moments,
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Table 6. The bounds for the first Regge pole of the V (r) = α2

r12 − β2

r6 scattering potential

(θ = π
20 ≈ 0.157, α2 = 4 A2

K2 = β2, E = A2, A = 141.425, K = 5).

(−J1, J2) l
(L)
R < lR < l

(U)
R l

(L)
I < lI < l

(U)
I

(−10, 16) 174.45 < lR < 184.28 20.06 < lI < 23a

a Search boundary (not an upper bound); Andersson’s (1993) numerical result is (180.011 94,
21.218 92).

we will be dividing by small numbers corresponding to the inversion of the C12(η) coefficient.
To make things more balanced (in generating both negative- and positive-indexed moments),
we may take

{
uo

−6, . . . , u
o
5

}
as the missing moments.

In addition, from equation (17) we know that (i.e. m = 12) 0 < θ < π
10 . The theta

dependence of the C12(η) will be largest at θ = π
20 . Note that we do not want θ to be too small

(i.e. ≈0) since then the corresponding Regge-pole solution dies off more slowly as ρ → ∞.
If we make θ ≈ π

10 , then the exponential decay of the Regge-pole solution is affected, for
ρ → 0. Thus, somewhere in the middle

(
θ ≈ π

20

)
would be the ideal position.

Table 6 compares the results of our EMM analysis with those of Andersson
(1993). Our numerical analysis also involves rescaled moments, ũη = uη

f η , where
f is chosen so that the coefficients of the ũo

η−12 and ũo
η moments, in the ũ-moment

equation (derivable from equation (85)), are equal: f = (
s2(θ)E

α2s10(θ)

) 1
6 .

Because of the smaller angle, the convergence rate of the bounds is very slow, as suggested
by the result in table 6. Nevertheless, the results are consistent with the result of Andersson’s
numerical calculations (1993), as well as those of Vrinceanu et al (2000a).

6. Non-singular scattering problems: the Bohr potential

For the case of ‘non-singular’ potentials, corresponding to scattering differential equations
where the origin is a regular singular point (Bender and Orszag 1978), if the sought for Regge
pole has a positive real part, lR > 0, then we can implement the previous formalism. If not, as
is the case for the Coulomb potential, a different approach is required. This is presented here.

Another important point concerns the convergence rate of the bounds. There is a strong
correlation between the rate at which the bounds converge, and how fast the associated
configuration dies off asymptotically. Evidence of this was presented in the polarization
potential case examined earlier. Also, in the recent work by Yan and Handy (2001), they show
how the convergence rate of the bounds significantly increases along the anti-Stokes lines.
With respect to the complex rotation of the Regge-pole Schrödinger equation, as θ increases,
the rate of decay of the configuration also decreases faster, as ρ → ∞ (i.e. equation (4)).
However, for singular potentials, equation (17) limits us (within the present EMM formulation,
as defined in the preceding sections). It is possible to take different (nonlinear) paths in the
complex-r plane that should increase the convergence rate of the bounds; however, this is not
discussed here.

For non-singular potentials, we are not limited by equation (17), thus we can take
0 < θ � π

2 . That is, non-singular problems will usually display faster convergent bounds than
singular problems.

For the case of the Bohr potential,

−� ′′(r) +

[
−Z

r
+




r2

]
�(r) = E�(r) (86)
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and other ‘non-singular’ potentials, the Regge-pole boundary condition at the origin
significantly complicates the analysis.

From the theory of differential equations, the basic solutions have the form rσ A(r),
where A(r) is analytic at the origin (A(0) ≡ 1), and the indicial exponent satisfies
σ(σ − 1) = 
 = l(l + 1), or σ = l + 1,−l. Thus, at the origin we have

�(r) = rl+1N1A1(r) + r−lN2A2(r). (87)

The Regge-pole solution has N2 = 0, or �r.p.(r) = rl+1NA1(r). In turn, it follows that
Sr.p(ρ) = ρ2(lR+1) e−2lI θ |NA1(ρ eiθ )|2.

In order for EMM to yield bounds within the NQR ‘S’-representation (equations (10)–
(12)), we must have that the physical solutions be uniquely bounded and non-negative. If the
Regge-pole, complex angular momentum has a positive real part, lR > 0, then it is the unique
solution which is both bounded and non-negative. This is because the other mode becomes
singular at the origin, and thus unbounded (i.e. the ρ−2lR factor becomes singular, yielding no
finite moments, for lR � 1

2 ).
However, if lR < 0, as is the case for the Coulomb potential, then within the NQR

representation, the Regge-pole solution is no longer uniquely non-negative. This is because
the Schrödinger equation will always admit solutions which decay along the θ = const ray (i.e.
0 < θ < π

2 ), as ρ → ∞. These same solutions, when continued in the ρ → 0 direction, will
display the behaviour given in equation (87). The corresponding S-representation configuration
will automatically be non-negative, and also satisfy the Regge-pole condition at the origin
(asymptotically), since the non-physical mode (r−l ) is subdominant relative to the physical
mode (rl+1).

Clearly, we must define some other condition that uniquely singles out the desired,
physical, Regge-pole solution. Obviously, we must exploit the fact that the Regge-pole
boundary condition at the origin is that the Regge-pole configuration becomes exactly the
rl+1 mode. We must develop an EMM formulation that only involves the physical mode
in equation (87), that is, A1(r). The only way to do this is to develop a moment equation
representation within the interval [ρs,∞), and match it to the power series approximation for
A1 at ρs .

Taking �r.p.(r) = rl+1A1(r) and substituting in the original Schrödinger equation give[
E +

Z

r

]
A1(r) +

2(l + 1)

r
A′

1(r) + A′′
1(r) = 0. (88)

The power series expansion, A1(r) = ∑∞
j=0 aj r

j , yields the recursion relation

a1 = − Z

2(l + 1)
a0 (89)

aj+1 = −
(

Zaj + Eaj−1

(j + 1)(2(l + 1) + j)

)
j � 1. (90)

We now perform a complex rotation on equation (88), using the notation A1(ρ eiθ ) ≡
Aθ(ρ): [

E e2iθ +
Z eiθ

ρ

]
Aθ(ρ) +

2(l + 1)

ρ
A′

θ (ρ) + A′′
θ (ρ) = 0. (91)

Of course, Aθ vanishes exponentially in the asymptotic limit ρ → ∞.
We can transform the above into an NQR formulation by using equations (8) and (9). In

terms of the notation adopted there, AR = 1, AI = 0, BR = 2(lR+1)

ρ
, BI = 2lI

ρ
, CR = Ec2 + Zc1

ρ

and CI = Es2 + Zs1
ρ

. The {S, P, J } coupled equations become

S′′(ρ) − 2P(ρ) + BR(ρ)S′(ρ) + 2CR(ρ)S(ρ) + 2BI (ρ)J (ρ) = 0 (92)
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BI (ρ)S′(ρ) + 2CI (ρ)S(ρ) − 2(BR(ρ) + ∂ρ)J (ρ) = 0 (93)

and

P ′(ρ) + 2BR(ρ)P (ρ) + CR(ρ)S′(ρ) − 2CI (ρ)J (ρ) = 0. (94)

In order to single out the physical mode (particularly in the case that lR < 0), we must
develop a moment equation over the interval [ρs,∞), where ρs is sufficiently small so that
a power series expansion for {S, P, J } converges rapidly. We need to multiply each of the
above equations by ρp+1 and integrate over [ρs,∞). The ensuing moment equations involve
the various boundary values for {S, P, J }. We note that∫ ∞

ρs

dρ ρpS′(ρ) = −ρp
s S(ρs) − pµp−1 (95)

and ∫ ∞

ρs

dρ ρpS′′(ρ) = −ρp
s S′(ρs) + pρp−1

s S(ρs) + p(p − 1)µp−2 (96)

where

µp ≡
∫ ∞

ρs

dρ ρpS(ρ) (97)

and likewise for νp and ωp.
The corresponding moment equations are

2Ec2µp+1 + 2Zc1µp + p(p − (2lR + 1))µp−1 + ρp
s [p − (2lR + 1)]S(ρs)

− ρp+1
s S′(ρs) − 2νp+1 + 4lIωp = 0 (98)

((2lR + 1) − p)ωp = Es2µp+1 + Zs1µp − lIpµp−1 − lI ρ
p
s S(ρs) + ρp+1

s J (ρs) (99)

[4lR + 3 − p]νp = Ec2(p + 1)µp + Zc1pµp−1 + ρp
s (Zc1 + Ec2ρs)S(ρs)

+ ρp+1
s P (ρs) + 2Es2ωp+1 + 2Zs1ωp. (100)

All for p � 0.
Since Aθ(ρ) = ∑∞

j=0 aj eijθ ρj depends only on a0, all of the quantities {S(ρs), S
′(ρs),

P (ρs), J (ρs)} depend, linearly, on |a0|2 = S(0). Recall from the discussion following
equation (7) that S(ρ) = |Aθ(ρ)|2, S′(ρ) = ∂ρS(ρ) = 2 Re(Aθ(ρ)∂ρA∗

θ (ρ)), P (ρ) =
|∂ρAθ(ρ)|2 and J (ρ) = Im(Aθ(ρ)∂ρA

∗
θ (ρ)). All of these quantities can be calculated

very precisely at ρs , from the power series expansion given by equations (89) and (90).
Therefore, the above quantities can be written as S(ρs) = f1S(0), S′(ρs) = f2S(0), P (ρs ) =
f3S(0), J (ρs) = f4S(0). The fn factors are numerically determined, to high accuracy, from
the power series expansion, for given θ .

Given the above, we can reduce the coupled set of moment equations to just one moment
equation for the µp and S(0). In doing this, we assume that lR takes on values such that the
quantities

j [p] =




2lR + 1 − p j = 1
2lR − p j = 2
2lR − 1 − p j = 3
4lR + 2 − p j = 4

(101)
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do not become non-negative integers. We can then use equation (99) to solve for ωp and
equation (100) to solve for νp. These are then substituted in equation (98). The resulting
µ-moment equation becomes(

Te(p) − 2Tν(p + 1)

4(p)
+

4lI Tω(p)

1(p)
− 4s1ZTω(p + 1)

2(p)4(p)
− 4Es2Tω(p + 2)

3(p)4(p)

)
S(0)

−
(

p
(
4l2

I + (1(p))2
)

1(p)

)
µp−1 +

(
2c1Z

(
1 − p + 1

4(p)

)
+

4lI s1Z

1(p)

+
4lI s1Z(1 + p)

2(p)4(p)

)
µp

(
2c2E

(
1 − (p + 2)

4(p)

)
+

4ElI s2

1(p)

+
4ElI s2(2 + p)

3(p)4(p)
− 4s2

1Z
2

2(p)4(p)

)
µp+1

− 4Es1s2Z

4(p)

(
1

3(p)
+

1

2(p)

)
µp+2 − 4E2s2

2

3(p)4(p)
µp+3 = 0 (102)

where

T�(p) =




ρ
p
s [p − (2lR + 1)]f1 − ρ

p+1
s f2 � = e

−lI ρ
p
s f1 + ρ

p+1
s f4 � = ω

ρ
p
s (Zc1 + Ec2ρs)f1 + ρ

p+1
s f3 � = ν.

(103)

The moments are linearly dependent on the missing moments {µ0, µ1, µ2} and S(0). We
denote these by {χ�|0 � � � 3}, respectively. This is expressed by

µp =
3∑

�=0

Mp,�(lR, lI )χ� (104)

p � 0, satisfying the initialization conditions:

M�1,�2 = δ�1,�2 0 � �1,2 � 2 (105)

and

M�1,3 = 0 0 � �1 � 2. (106)

The M satisfy the moment equation (equation (102)) with respect to the p-index. Thus
we have

4E2s2
2

3(p)4(p)
Mp+3,� = −

(
p
(
4l2

I + (1(p))2
)

1(p)

)
Mp−1,� +

(
2c1Z

(
1 − p + 1

4(p)

)

+
4lI s1Z

1(p)
+

4lI s1Z(1 + p)

2(p)4(p)

)
Mp,�

(
2c2E

(
1 − (p + 2)

4(p)

)
+

4ElI s2

1(p)

+
4ElI s2(2 + p)

3(p)4(p)
− 4s2

1Z
2

2(p)4(p)

)
Mp+1,�

− 4Es1s2Z

4(p)

(
1

3(p)
+

1

2(p)

)
Mp+2,� (107)

for 0 � � � 2, and

4E2s2
2

3(p)4(p)
Mp+3,3 =

(
Te(p) − 2Tν(p + 1)

4(p)
+

4lI Tω(p)

1(p)
− 4s1ZTω(p + 1)

2(p)4(p)

− 4Es2Tω(p + 2)

3(p)4(p)

)
−
(

p
(
4l2

I + (1(p))2
)

1(p)

)
Mp−1,3 +

(
2c1Z

(
1 − p + 1

4(p)

)
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+
4lI s1Z

1(p)
+

4lI s1Z(1 + p)

2(p)4(p)

)
Mp,3

(
2c2E

(
1 − (p + 2)

4(p)

)
+

4ElI s2

1(p)

+
4ElI s2(2 + p)

3(p)4(p)
− 4s2

1Z
2

2(p)4(p)

)
Mp+1,3

− 4Es1s2Z

4(p)

(
1

3(p)
+

1

2(p)

)
Mp+2,3. (108)

The normalization condition is

S(0) +
2∑

�=0

µ� = 1. (109)

We can solve for µ0 in terms of the other variables {χ�|1 � � � 3}. Substituting back into
equation (104) gives

µp = M̂p,0 +
3∑

�=1

M̂p,�χ� (110)

where

M̂p,� =
{
Mp.0 � = 0
Mp,� − Mp,0 1 � � � 3.

(111)

Finally, the moment problem constraints become

∫ ∞

ρs

dρ Fn(ρ)


 J∑

j=0

Cjρ
j




2

S(ρ) > 0 (112)

for arbitrary Cj (not all identically zero), J < ∞, and

Fn(ρ) =



1 n = 0
ρ n = 1
(ρ − ρs) n = 2.

(113)

These in turn become the quadratic form inequalities
J∑

j1,j2=0

Cj1

(
�n,1µj1+j2 + �n,2µj1+j2+1

)
Cj2 > 0 (114)

where

(�n,1,�n,2) =



(1, 0) n = 0
(0, 1) n = 1
(−ρs, 1) n = 2.

(115)

Substituting equation (110) defines the linear programming problem which is solved through
the EMM algorithm:

3∑
�=1

χ�


−

J∑
j1,j2=0

Cj1

[
�n,1M̂j1+j2,�(lR, lI ) + �n,2M̂j1+j2+1,�(lR, lI )

]
Cj2




<

J∑
j1,j2=0

Cj1

[
�n,1M̂j1+j2,0(lR, lI ) + �n,2M̂j1+j2+1,�(lR, lI )

]
Cj2 (116)

which must be satisfied for all C (not identically zero) and all J � 0, by the correct physical
(lR, lI ) Regge-pole value. Note that if Pmax is the maximum moment order generated, then
1 + 2J � Pmax.
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Table 7. The bounds for the first two Regge poles of the, V (r) = − Z
r

, Coulomb potential
(Z = 1, k = 1). The expansion order in equation (90) is 40.

Pmax ρs θ l
(L)
R < lR < l

(U)
R l

(L)
I < lI < l

(U)
I

30 1 π
4 −1.001 23 < lR < −0.997 93 0.4990 < lI < 0.5005

30 1 π
4 −2.06 < lR < −1.88 0.3 < lI < 0.56

40 1 π
4 −2.03 < lR < −1.96 0.42 < lI < 0.53

30 2 1 −1.000 0013 < lR < −0.999 9990 0.499 999 88 < lI < 0.500 000 30
30 2 1 −2.000 11 < lR < −1.999 95 0.4993 < lI < 0.5004

The results of our analysis, for the Z = 1 Bohr potential problem, are given in table 7.
Note that the exact formula is (Frautschi 1963, equations (8)–(11), p 121, Newton 1982,
chapter 13)

lBohr–Regge pole = −(1 + n) +
iZ

2k
(117)

where E = k2, and for n = 0, 1, 2, . . . .

7. Conclusion

We have presented in greater detail the EMM–Regge-pole bounding formalism first
communicated by Handy and Msezane (2001). The present results confirm the benefits
of this type of analysis in assessing the theoretical/numerical accuracy of other methods.
We have presented the formalism on various types of rational fraction potentials, focusing
on the essentials of each type. These included both irregular singular point potentials (i.e.
singular potentials) and regular singular point potentials (i.e. regular potentials). Presently,
we are investigating alternate representations capable of making the previous formalism more
efficient (i.e. tighter bounds).
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